Deep Learning Networks Synergize Pathology and Genomics
Currently, the integration of heterogeneous data types is actively used in completely different fields and is a promising area of research, especially relevant for medical science, opening up new opportunities for both diagnosis and a deeper understanding of diseases. This blog explores the approach of combining various data...
ChatGPT trenuje MLP na zbiorze MNIST
Czy możemy wykorzystać model ChatGPT do wygenerowania kodu do treningu w PyTorchu? Tak i nie. Robi błędy, ale część umie poprawić. Ostatecznie proste MLP działa, po poprawkach związanych z importami. Są też problemy nie do przeskoczenia o czym niżej. Zapytanie które wpisałem wyglądało następująco: I need a simple...
Wykrywanie obiektów na obrazie – ML Gdańsk
O wykrywaniu obiektów na obrazie. Metody z 2020 roku, opowiadane w tymże roku, więc tutaj uczulam, że nie wszystkie miałem okazję przetestować osobiście. Niektóre tylko wymienię, że istnieją, bo są ciekawe. Wpis ten powstał na podstawie wystąpienia na 97 ML Gdańsk z 14.12.2020. Obecnie (2022Q1) warto spojrzeć na YOLOR i...
Model CNN do klasyfikacji samochodów
W tym poście postaram się pokazać drogę tworzenia modelu konwolucyjnej sieci neuronowej do klasyfikacji samochodów wg. marki, modelu i rocznika. Zacznę od analizy zbioru danych, potem porównam model z jednym i z trzema wyjściami, skorzystam z tf.data i learning rate warm-up do poprawy działania modelu, a na koniec porównam...
Budowa klasyfikatora zdarzeń dźwiękowych na obrazie z Pytorch Lightning i Streamlit
W pierwszej części tej serii udało nam się poznać sposoby ekstrakcji cech wizualnych z dźwięku i dowiedzieć się na co uważać w problemach audio jeśli do tej pory mieliśmy do czynienia tylko z wizją. Pozostaje jednak jeszcze jedna kwestia do porównania – próg wejścia. W mojej opinii, wizja komputerowa jest...
Audio – wizja w przebraniu?
Ekstrakcja cech wizualnych z dźwięku i porównanie przetwarzania audio i wizji komputerowej Co przychodzi Ci jako pierwsze do głowy kiedy poproszę Cię abyś wyobraził_a sobie dźwięk? Jeśli jesteś związany_a z muzyką to być może jedną z pierwszych myśli będą np. nuty. Zapis ten ma za zadanie przedstawić nam graficznie...
Deep learningowy kalendarz adwentowy 2021
24 dni treści o sieciach neuronowych do analizy obrazu – rzecz się działa na Linkedinie w grudniu 2021 roku. Postanowiłem jednak te treści udostępnić również tutaj – w jednym miejscu, by ułatwić przejście przez nie (taki był plan). Zapraszam! 1. Do czego sieci neuronowe w analizie obrazu? Mówiąc o sieciach...
Trening YOLOv4 i śledzenie obiektów CTMC-V1
Poniższy wpis jest kontynuacją serii opisującej nasze zmagania ze zbiorem linii komórkowych CTMC-V1. Zadaniem jest wykrycie i śledzenie obiektów (w tym przypadku komórek) na kolejnych klatkach filmów. Postawnowiliśmy rozwiązać ten problem poprzez rozdzielenie zadania wykrywania i śledzenia komórek. W poprzednim poście,...
COVID-19 Detection – konkurs Kaggle
COVID-19 na zdjęciach rentgenowskich wygląda podobnie do zapalenia płuc wywołanego innymi niż SARS-CoV-2 wirusami, a także zapalenia płuc pochodzenia bakteryjnego. Jednocześnie zdjęcie rentgenowskie powstaje szybciej niż wynik badania RT-PCR, będącego standardową metodą wykrywania wirusa SARS-CoV-2. Jest także łatwiejsze...
SOTR, czyli segmentacja instancji z wykorzystaniem transformera
Mniej więcej rok temu opisywałam na blogu w jaki sposób uruchomić inferencję modelu DETR do wykrywania obiektów i segmentacji instancji. Czemu o tym wspominam? Bardzo niedawno ukazał się SOTR, czyli Segmenting Objects with Transformer, czyli kolejny model, który z powodzeniem wykorzystuje znanego z przetwarzania języka...